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Abstraet-This article examines extensional waves propagating in an infinite plate of trans­
versely isotropic material with the axis of transverse isotropy lying in the plane of the plate.
Attention is restricted to waves propagating in the direction of transverse isotropy and an
equation is derived for the phase velocity as a function of wavelength. Expressions are also
obtained for the variation of stress through the thickness of the plate. Correspondina results
are obtained for the idealized material which is inextensible in the direction of transverse is­
otropy. These two materials provide possible models for an elastic matrix reinforced by a family
of parallel fibres. A comparison of the results shows that the inextensible material behaves
quite differently from the anisotropic material in the long-wavelength region.

I. INTRODUCTION

The macroscopic behaviour of a composite material consisting of an isotropic elastic
matrix reinforced by a family of parallel elastic fibres can be modelled by a continuum
theory which treats the composite as a transversely isotropic elastic material with the
axis of transverse isotropy coinciding with the fibre direction (see, for example, Spen­
cer[ 1)). Generally the extensional modulus of the fibres is considerably higher than a
typical modulus of the matrix and the macroscopic model will be strongly anisotropic,
with the extensional modulus in the direction of transverse isotropy being very much
greater than that in any direction at right angles to the fibres. An idealization of this
behaviour is to treat the continuum as being inextensible in the fibre direction and this
leads to a comparatively simple system of governing equations for static boundary
value problems. A number of solutions of these equations have been obtained by Eng­
land, Ferrier and Thomas[21 and by Morland[31. Pipkin[4] has shown that this inex­
tensible theory is an asymptotic approximation to the theory of transversely isotropic
elasticity in the limit as the extensibility in the fibre direction tends to zero. Both
Pipkin[41 and SpencerllJ discuss the role of the solutions to static problems in the
inextensible theory in providing information about solutions to the corresponding prob­
lems for strongly anisotropic materials.

In an attempt to examine the relation between the inextensible and strongly ani­
sotropic models in dynamic problems, Green[5] has considered the propagation offlex­
ural waves in an infinite plate using the two theories. The conclusion is that the inex­
tensible model fails to reproduce the long-wave (low-frequency) behaviour of the
strongly anisotropic material. In this paper we extend this investigation to the consid­
eration of extensional waves in an infinite plate, restricting consideration to waves
propagating in the fibre direction. Solutions in the inextensible theory are derived in
Section 2; Section 3 is devoted to longitudinal waves in a plate of transversely isotropic
material. Approximate forms of the solutions of Section 3 for strongly anisotropic
materials are obtained in Section 4 and the limiting case of zero extensibility in the
fibre direction is examined. Section 5 contains numerical results for the wave velocity
as a function of wavelength for a particular composite material and graphs of the stress
variation through the plate thickness at a number of discrete wavelengths. The final
section is devoted to a discussion of the results.
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2. IN EXTENSIBLE PLATE

We consider an infinite plate of transversely isotropic elastic material with the di­
rection of transverse isotropy lying in the plane of the plate. Choosing cartesian co­
ordinates OXI normal to the plate, OX2 and OX3 in the middle plane of the plate with
OX3 in the direction of transverse isotropy, the boundary surfaces of the plate are given
by XI = ± h, where 2h is the plate thickness. We restrict attention to longitudinal waves
propagating in the x3-direction, corresponding to a state of plane strain in the XIX3 plane,
and in this section we assume the material (0 be inextensible in the direction of trans­
verse isotropy. The constitutive equations in plane strain are then (see Spencer[l))

to which must be added the inextensibilityconstraint

e33 = o. (2.2)

In eqns (2.t) and (2.2), t is the time, A, ....T and IJ-L are material constants. tij are the
components of the Cauchy stress tensor. t is a reaction stress associated with the
inextensibility constraint and eu are components of the strain tensor defined in terms
of the displacement components UI..XI"t) by the relations

(2.3)

For plane waves propagating with speed v and wave number k in the x3-directions the
displacements Uj and reaction stress t have the form

UI = V(XI) cos <P. U2 = 0, U3 = W(XI) sin <P. t = T(xJJ cos <P. (2.4)

where

<P = k(X3 - vt).

The inextensibility constraint (2.2) leads immediately to

w= 0

and eqns (2.4) when substituted into (2.1) give

(2.5)

(2.6)

til = (A + 2....T)U' cos <P.
t33 = T cos <P,

t22 = AU' cos <P,
tl3 = - tLLkV sin <P,

(2.7)

where the prime denotes differentiation with respect to XI.

The equations of motion in the X,X3 plane are

atll atl3 ..
- + - = pu"
aXI aX3

iU31 at33 ..-+-= puJ,ax, aX3

(2.8)

where p is the density of the material and the dots denote differentiation with respect
to time. Equations (2.8) are to be solved subject to traction-free boundary conditions
on the upper and lower surfaces of the plate, namely

til = 0, tl3 = 0 at XI = ±h. (2.9)
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Substituting from (2.4), (2.6) and (2.7) into the equations of motion (2.8) gives the
equations

where

crV" + kZCv2
- d)v = 0,

h + 2 1L1'd= .p

T
dV' + - = 0,

p

d = ILL,.
P

(2.10)

(2.11)

Equations (2.10) are to be solved for V(XI), T(xl) subject to the boundary conditions

V' = 0, V = 0 at XI = ±h, (2.12)

which arise from substituting (2.7) into (2.9). The general solution of eqns (2.10) is

V = A sin kpxl + B cos kpx., T = -pdkp(A cos kpxl - B sin kpx,), (2.13)

where A and B are arbitrary constants and

The boundary conditions (2.12) are satisfied by the solutions (2.13) provided

(2.14)

A sin kph = 0,
B cos kph = 0,

pA cos kph = 0,
pB sin kph = O.

(2.15)

Equations (2.15) have only the trivial solution A = B = 0 or the solution B = 0, p =
O. The latter corresponds to rJ = d. for which the general solution of eqns (2.10) is
no longer given by (2.13) but has the form

V = Axl + /i, (2.16)

where Aand Bare arbitrary constants. The solutions (2.16) satisfy the boundary con­
ditions (2.12) only if A = 0, B = 0, which again gives the trivial solution.

In order to get non-trivial solutions it is necessary to postulate the existence of
singular layers at the upper and lower surfaces of the plate (see Green[5]).In the singular
layers the reaction stress t becomes infinite, corresponding to finite loads L+ and L­
in the upper and lower surfaces, respectively. Across a singular layer, the shear stress
t'3 is discontinuous, being zero at X, = ±h but having a non-zero limit as XI - ±h
from the interior of the plate. That such singular surfaces are possible may be deduced
from integrating the second of the equations of motion (2.8) from XI = h(l - a) to X,

=h for any a satisfying 0 < a < 1. This gives

[t lx,-h
31 x\-h(l-a)

a f" fir+ - tndx l = PU3 dx l ,
aX3 ,,(I-a) "(I-a)

(2.17)

which on using (2.6), (2.7) and the condition that t31 = 0 at XI = h, reduces to

JAoLV{h(l - a)} - rh

T(x.> dx l = 0,
)h(l-a)

(2.18)

where we have eliminated the factor k sin et>. Proceeding to the limit as a - 0, eqn
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(2.18) yields
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f
h

L + = lim T(xd dx l = pejU(h),
(7-0() hI I - 0")

(2.19)

and the load L+ in the upper surface is given by L+ = L + cos <1>. Repeating this process
from XI = -h(l - 0") to XI = -h gives, at the lower surface,

L - = -lim J-h T(x.) dx l = -pdU( -h),
....-0 - h(\ - 0")

(2.20)

with a corresponding load L- = L - cos <1>.
With the boundary conditions tl3 = 0 at XI = ±h accounted for by these singular

surfaces, it is necessary to solve eqn (2.10) subject only to the boundary condition

V' = °at XI = ± h, (2.21)

corresponding to the traction condition til = 0. Using the solutions (2.13), eqn (2.21)
is satisfied provided

pA cos kph = 0,

The non-trivial solutions to these are

pB sin kph = O. (2.22)

A = 0, kph = n11', n = 0,1,2 and

B = 0, kph = (n + !)11', n = 0,1,2 .
(2.23)

The first set of solutions (2.23) correspond to bending waves which have been examined
by Green[5]. The second set of solutions are symmetric about the middle plane of the
plate and correspond to longitudinal waves travelling with speeds of propagation Vn

given by

The associated displacements and stresses are given by

u. = An sin(n + !)11' :1 cos <1>, U2 = 0, U3 = 0,

and

2 11' XI
- pC3(n + !) hAn cos(n + 011' h cos <I>

+ PC~n( -l)n{a(XI - h) + a(XI + h)} cos <1>,

(2.24)

(2.25)

(2.26)

tl3 = - pd(n + !) p: An sin(n + !)11' :1 sin <1>,

= 0

Ix.! < h,

Ix.! = h.

Here An is an arbitrary constant and a(s), the Dirac delta function.
The fundamental mode of propagation is given by n = 0 and for this the phase

velocity varies from the asymptotic value C3 in the limit as kh - co, increasing as kh
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decreases and tending to infinity as kh - O. The associated displacements and stresses
are obtained from (2.25) and (2.26) on putting n ::; O. The wave number k is related to
the wavelength A by the expression k ::; 2-rr/A and the limits kh - 00 and kh - 0
correspond to waves of vanishingly small and infinitely large wavelengths respectively.
Introducing the circular frequency 00 through the relation 00 ::; kv, eqn (2.24) may be
rewritten in the form

(2.27)

showing that the phase velocity Vn has a cut-off at the frequency

(2.28)

and in particular the fundamental mode has a cut-off frequency of 000 ::; -rrcl/2h. The
theory thus predicts that longitudinal waves with frequency lower than Wo will not prop­
agate in the inextensible plate.

3. ANISOTROPIC PLATE

In this section we examine wave propagation in a transversely isotropic plate without
the inextensibility constraint. We again consider waves propagating in the direction of
the axis of isotropy Ox), under plane strain conditions in the XIX) plane. The appropriate
constitutive equations are now (see Spencer[l])

til ::; (A + 2~T)e1l + (A + a)en

t22 ::; Aell + (A + a)e))

t)) ::; (A + a)ell + (A + 4~L - 2~T + 2a + (3)e))
(3.1)

where a and 13 are two additional material constants. Assuming displacements of the
form

the stresses are given by

til ::; p(dU' + dkW) cos <1>,

t22 ::; p{(d - 2t1)U' + dkW} cos <1>,

t)) ::; p(dU' + dkW) cos <1>,

tl) ::; pc~( - kU + W') sin <1>,

where

(3.2)

(3.3)

c~ ::; ~T,
P

2 A + a
C4::; --,

p
~ == A + 4~L - 2~T + 2a + 13.

p
(3.4)

Substituting from (3.3) into (2.8) the equations of motion become

C~U' + k2(V2 - c~)U + (d + d)kW' == 0,

-(d + d)kU' + dw' + Jc2(t? - ~)W == O.
(3.5)
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For motions which are symmetric with respect to the middle plane of the plate, eqns
(3.5) have the general solution

(3.6)

where A I and A3 are arbitrary constants and PT and PJ are, respectively, the algebra­
ically greatest and least root of the quadratic

Substituting the solutions (3.6) into the stress equations (3.3), the boundary conditions
(2.9) are satisfied provided

{ctdpt - d(d - v2
)} AI cos kp.h + {cteWJ - d(d - v2

)} A3 cos kP3h = 0,
PI P3

(etpt - v2 - d)A1 sin kplh + (dpJ - v2 - d)A3 sin kp3h = O. (3.8)

These equations have non-trivial solutions for AI and A 3 provided

(3.9)

Equation (3.9) is the secular equation which determines the phase velocity v of
longitudinal waves as a function of kh. The solution of this allows A I and A 3 to be
expressed in terms of a single arbitrary constant A, using either of eqns (3.8), and leads
to expressions for U and W in the form

(3.10)

The expressions (3.10) when substituted into the last two of eqns (3.3) give equations
for the stress components t33 and tl3 in the form

(3.11)

To obtain the dispersion curve for phase velocity (v) as a function of scaled wave
number (kh) for a specific material, it is necessary to solve the secular equation (3.9)
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numerically and this is done in Section 5. It is a relatively simple matter to solve eqn
(3.9) for a general material in the limiting cases of infinitely long waves (kh -+ 0) and
infinitesimally short waves (kh -+ 00).

In the long wavelength limit, as kh -+ 0, the sine functions in eqns (3.9) may be
replaced by their arguments and the cosines have the value unity. Equation (3.9) then
reduces to

From the quadratic equation (3.7), for p2 we obtain expressions for pip~ and (pi +
p~) in the form

ddpip~ = (v2
- d)(v2 - d)

dd(pi + pj) = v2(d + d) + (d + d)2 - (dd + c~).

(3.13)

Substituting from (3.13) into eqn (3.12) and eliminating non-zero factors leads to the
equation

which has solutions

(3.14)

or (3.15)

The first of these solutions may be shown to be spurious and the second gives the
limiting velocity of long waves in the fundamental longitudinal mode.

To examine the limiting solution of eqn (3.9) for short wavelengths we assume that
v2 < d and both pi and p~ are negative. Writing pi = -qi, p~ = -q~ and dividing
through eqns (3.9) by cos kp1h cos kp3h leads to the equation

In the limit as kh -+ 00 the hyperbolic tangents in eqn (3.16) both have value unity and
the equation reduces to

(q3 - q.) {c1dqiq~ + dd(d - v2)(q~ + qi)
q.q3

- v2d(d + d)qlq3 + d(d - V
2

)(V
2 + d)} = O. (3.17)

Using eqns (3.13), eqn (3.17) simplifies to the form

(3.18)

which is identical with the equation derived by Green[5] for the limiting speed of prop­
agation of bending waves. The solution of eqn (3.18) gives the speed of propagation of
the Rayleigh surface wave in the anisotropic material along the preferred direction.
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4. STRONG ANISOTROPY AND INEXTENSIBLE LIMIT

The solutions derived in Section 3 are valid for all transversely isotropic materials.
If the material is almost inextensible in the direction of transverse isotropy, we have

(4.1)

where E <6i I. In the limit as E - 0, corresponding to 13 - 00, the material becomes the
inextensible material considered in Section 2. Here we examine the secular equation
(3.9) for the almost inextensible material. We consider solutions corresponding to the
phase velocity v remaining finite in the limits as E - O. Then eqn (3.7) has the form

with approximate solutions

2 _ (v
2

- d) + O( 2)
PI - 2 E ,

c.

]
PJ = - "2 + 0(1).

E
(4.3)

Substituting from (4.3) into (3.9) and using eqn (4.1) leads to the approximate secular
equation

( 2 2)1/2 {kh(V
2

- CW
/2

} . h (kh)c. v - C3 cos sm -
CI E

. {kh(V2
- d)1/2} (kh)- Ed sm cosh -
CI E

for if > d, eqn (4.4) has the approximate solution

(4.4)

2 _ 2 d'lT2
_ 2 2 {coth(khIE)} 0 ( 2)

V - C3 + 4k2h2 EC3 kh + E, (4.5)

which in the limit as E - 0 agrees with the solution (2.24) with n = O. The solution
(4.5) is not valid as kh - 0 since this would indicate if - IX: and violates the assumption
leading to (4.3). The solution also breaks down as kh - 00 since this would lead to
values of if < d and again violates the condition under which the approximate solution
is obtained. In these two limits the behaviour of the phase velocity is given by eqns
(3. ]5) and (3.18), respectively.

5. NUMERICAL RESULTS

The numerical solutions reported in this section are calculated using the experimental
results of Markham[6] for a carbon-fibre-epoxy resin composite. For this material the
squared wave speeds are given by

pd = 10.57 x ]09Nm- 2, pd = 2.46 x 109Nm- 2, pd = 5.66 x 10!1Nm- 2,

pcl = 4.37 x 109Nm- 2, pd = 241.7] x 109Nm- 2 ,

and the corresponding value of E is

C3
E =- = 0.]53.

Cs

These constants have been employed to determine the values of kh corresponding
to specified values of v from eqn (3.9). The results are given in Table 1, together with
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Table I. Phase velocity as a function of wavelength, (a) Anisotrbpic material. exact SOlution. eqn (3.9).
(b) Anisotropic material. approximate solution. eqn (4.5), (e) lncxtcnsiblc matcrial, cqn (2.24)

v2/e~

kh (4) (b) (el

0 42:386 CD

0.255 42.000 70.355 7l.641

0.321 40.000 44.626 45.607

0.356 35.000 36.563 37.440

0.387 30.000 30.965 31. 766

0.426 25.000 25.703 26.427

0.478 20.000 20.532 21.175

0.688 10.00ci 10.276 10.721

1.958 2.000 2.046 2.202

3.349 1.300 1.320 1.411

5.210 1.100 1.111 1.170

11.882 1.000 1.007 1.033

18.861 0.990 0.997 1.013

CD 0.987 1.000 1.000

351

approximate values of v calculated from (4.5). Also shown in Table 1 are the solutions
for the fundamental mode of propagation of longitudinal waves in the inextensible
material, obtained by taking n = 0 in eqn (2.24). It is clear that the approximate solution
(4.5) has a limited range of validity and that the inextensible solution deviates signif­
icantly from the almost inextensible solution as kh - O.

The variation in shear stress 113 and in the normal stress in the propagation direction
133. through the plate thickness may be calculated using the solutions (3.J1). This has
been carried out for a number of values of kh and the results are plotted in Figs. J and

pc'!~f
0.2

-0.6

-1.0

tdl
07 4 o

Fig. 1. Variation ofshear stress tl3 through the platefor wavelengths given by. (a) kh = 18.861.
(b) kh ... 1.958. (c) kh .., 0.688, (d) kh = 0.255. The dashed curve relates to the inextensible
material.
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Fig. 2. Variation of shear stress I)) through the plate for wavelengths given by. (a) kh == 18.861.
(b) kh = 1.958, (cl kh = 0.688. (d) kh = 0.255. Scale must be multiplied by Icf to get stress
values for case (d). The dashed curves relate to the inextensible material and have a delta
function singularity at x./h == I.

2, respectively. The graphs show the variation of stress over half the plate thickness,
the abscissa running from the surface of the plate, x./h = I, to the centre, xdh = O.
Also shown is the variation of stress through the plate for the fundamental longitudinal
mode of propagation in the inextensible material. It should be noted that there is a
delta function singularity in the normal stress 133 at x./h = I which cannot be shown
in the figure. It is clear from these figures that the stresses associated with waves in
the inextensible plate are significantly different from those in the extensible plate in
both the long-wave and short-wave limits.

6. DISCUSSION

The analysis of Section 4 shows that the solution for the inextensible material (Sec­
tion 2) is the limiting case of the solution for the strongly anisotropic material (Section
3) provided kh remains finite and non-zero in the limit as e -+ O. The portions of the
dispersion curve corresponding to kh <Si e and kh ~ lie for the strongly anisotropic
material are lost in the limit process which leads to the inextensible material. The stress
states in the plate, shown in Figs. I and 2, clearly bring out the reason for this phe­
nomenon. Thus, in the long-wavelength limit (kh <Si e) for the strongly anisotropic
material, the state of stress through the plate thickness is a virtually constant normal
stress in the propagation direction with practically zero shear stress, but it is not possible
to reproduce this stress state in the inextensible material. It is for this reason that the
inextensible material exhibits a cut-off frequency whereas longitudinal waves of all
frequencies may propagate in the almost inextensible material. At the short-wave limit
(kh ~ lie) both the shear stress and the normal stress in the almost inextensible material
exhibit the exponential decay away from the plate boundaries which is associated with
a surface wave, whilst the inextensible solution gives a completely different variation
in shear stress through the plate thickness. The inextensible material therefore serves
to model longitudinal-wave propagation in the fibre-reinforced material only for a re­
stricted range of wavelengths and, in general, it is necessary to employ a transversely
isotropic model which includes extensibility in the fibre direction. A similar conclusion
arises from the analysis of flexural-wave propagation carried out by Green[5]. The
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results presented here refer specifically to waves propagating in the fibre direction, but
an investigation of waves propagating at any angle to the fibre direction is currently
being carried out.
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